Classical Geometry Configurations

Matthew Brennan
brennanm@mit.edu

1 Notation

Throughout this note, $A B C$ will denote a triangle with incenter I, circumcircle Γ, circumcenter O, orthocenter H and excenters I_{a}, I_{b} and I_{c}. We will also denote the angles $\angle A, \angle B$ and $\angle C$ by a, b and c, respectively. We won't worry too much about configuration issues in this note (but you should in your write-ups!). Many of the lemmas and configurations presented here are from Yufei Zhao's note Lemmas in Euclidean Geometry, which is a great reference on the subject.

2 An Example Lemma

There are many lemmas that come up in various Olympiad geometry problems, the vast majority of which are not known by a name or deemed to be "well-known". In this note, we will try to sample a mixture of well-known and relatively unknown lemmas. Some of these lemmas are quite easy to prove and are primarily useful because they give you one more thing that is true for free when solving a problem. Other lemmas would themselves yield quite good Olympiad problems and involve a wide range of techniques.

The first lemma we present has a nice proof making use of one of the most important facts in Olympiad geometry - spiral similarity. This says that if $O A B$ and $O C D$ are similar triangles with the same orientation, then $O A C$ and $O B D$ are also similar.

Example 1. Let D be the point at which the incircle is tangent to $B C$ and suppose that P and Q lie on segments $B I$ and $C I$ such that $\angle P A Q=\frac{1}{2} \angle B A C$. Then $\angle P D Q=90^{\circ}$.

Proof. Let E be the intersection of the line perpendicular to $B I$ through P with $A B$. Define F similarly on $A C$. Note that $B E P$ and $B I D$ are similar right triangles, implying by spiral similarity that $B E I$ and $B P D$ are similar. Thus $\angle B D P=\angle B I E$. Similarly $\angle C D Q=\angle C I F$. Thus it suffices to show that $\angle B I E+\angle C I F=90^{\circ}$.

Now note that $\angle A E P=90^{\circ}+b / 2=\angle A I Q$. Note that $\angle P A Q=\frac{1}{2} \angle B A C$ implies that $\angle E A P=\angle I A Q$. Thus $A E P$ and $A I Q$ are similar, implying by spiral similarity that $A E I$ and $A P Q$ are similar. By symmetry, these are both also similar to $A I F$. Now it follows that $\angle B I C+\angle E I F=$ $\angle B I C+\angle A P Q+\angle A Q P=90^{\circ}+a / 2+180^{\circ}-a / 2=270^{\circ}$, implying $\angle B I E+\angle C I F=90^{\circ}$.

The main motivation for adding the points E and F is that we first notice $\angle E A P=\angle I A Q$, which means there is a hidden spiral similarity about A mapping these angles to one another. This prompts us to at least try to "complete the transformation". A natural way to do this is to consider the spiral similarity mapping $A Q$ to $A P$ and to define E as the point which I is mapped to. After we have defined E in this way, everything falls into place. Completing transformations is
a really useful way (but certainly not the only way) to motivate adding "magic points" that solve diagrams. A lot of key points are either the centers of transformations existing in the diagram or the images of points under transformations. Spiral similarities are always present, rotations are present whenever there is an isosceles triangle, homotheties are present in all trapezoids and tangent circles and translations are present in any parallelogram.

We next will give an alternative proof which is admittedly contrived and far less motivated. However, it at least proves a little bit more and explores a slightly different configuration. It also demonstrates the phantom point method, where we define a point D^{\prime} alternatively in a way that is easier to use and then show that $D=D^{\prime}$.

Alternative Proof. Consider the point F on $B C$ such that $A P$ bisects $\angle B A F$. It follows since $\angle P A Q=\frac{1}{2} \angle B A C$ that $A Q$ bisects $\angle C A F$. Thus P and Q are the incenters of $B A F$ and $C A F$. Let the other internal tangent between the incircles of $B A F$ and $C A F$ intersect $B C$ again at D^{\prime}. Suppose that the incircles of $B A F$ and $C A F$ are tangent to $B C$ at X and Y. Note that $F X-F Y$ is the length of the common tangent between the two incircles and thus equal to $D^{\prime} Y-D^{\prime} X$. Since $D^{\prime} X+D^{\prime} Y=X Y=F X+F Y$, it follows that $F Y=D^{\prime} X$. Therefore $B D^{\prime}=B X+F Y=$ $\frac{1}{2}(A B+B F-A F)+\frac{1}{2}(A F+F C-A C)=\frac{1}{2}(A B+B C-A C)=B D$. Thus $D=D^{\prime}$. Since $P D$ and $Q D$ bisect the angles formed by the other common tangent to the incircles of $B A F$ and $C A F$ and $B C$, it follows that $\angle P D Q=90^{\circ}$.

3 Incenter, Excenters and Midpoints of Arcs

In this section, we go over a few triangle lemmas and results that come up fairly frequently. We begin with a classical lemma.

Lemma 1. Suppose that D is the midpoint of the arc $\widehat{B C}$ not containing A of Γ, then D is the midpoint of $I I_{a}$ and the center of a circle passing through B, I, C and I_{a}.

Proof. Since A, I and D are collinear, a quick angle chase yields that $\angle D I B=\angle D B I=90^{\circ}-c / 2$. Similarly, an angle chase yields $\angle D I_{a} B=\angle D B I_{a}=c / 2$, implying the result.

The next example we will show illustrates the usefulness of power of a point. In this example, it initially seems hard to relate I to either M or E. Power of a point can in general be useful for finding angles about seemingly unrelated points.
Example 2. Suppose that E is the midpoint of arc $\widehat{B A C}$ and M is the midpoint of side $B C$. Then AI is tangent to the circumcircle of EIM.
Proof. Let D be the midpoint of arc $\widehat{B C}$. Note that $D E B$ is a right triangle since $D E$ is a diameter of Γ and M is the projection of B onto $D E$, which yields that $D B^{2}=D M \cdot D E$. It follows by the previous lemma now that $D B=D I$ and hence $D I^{2}=D B^{2}=D M \cdot D E$, implying the result by power of a point.

Next we prove a classical lemma by completing a homothety present in the diagram - another "completing the transformation" style proof. In general, whenever there are circles tangent to sides, tangent circles, it is useful to consider completing homotheties.

Lemma 2. Suppose that incircle and A-excircle of $A B C$ are tangent to $B C$ at M and N, then AN passes through the point diametrically opposite to M on ω and $A M$ passes through the point diametrically opposite to N on ω_{a}.

Proof. Consider the homothety with center A mapping the A-excircle to the incircle of $A B C$. This maps the point N to N^{\prime} on the incircle such that the tangent to the incircle at N^{\prime} is parallel to $B C$. This is the point diametrically opposite M. The other result follows similarly.

In applications of power of a point or homothety, it often can be useful to introduce new circles as in the following example.

Example 3. Let D be the foot of the altitude from A to $B C$, let M be the midpoint of $A D$ and let K be the point of tangency between the incircle of $A B C$ and $B C$. Then I_{a}, K and M are collinear.

Proof. Consider the circle ω with diameter $A D$. Let P be the point diametrically opposite to the point of tangency between the A-excircle and $B C$. Note that $A P$ must intersect $B C$ at the center of the internal homothety mapping ω to the A-excircle. By the previous lemma, $A P$ intersects $B C$ at K. The result follows since the centers of the two circles and K must be collinear.

Sometimes a line, point or other object is in a kind of awkward place and it would be much more convenient to move it elsewhere i.e. the angles around some point are completely unrelated to the rest of the diagram. Applying some sort of transformation (a homothety, rotation, spiral similarity or translation) is usually the right way to move it around. The key is to move the object around in such a way that its important properties are preserved. In the next lemma, a segment is in the wrong place, so we move it to a more convenient place with a homothety. The key is we only care about ratios of its subsegments, which are preserved under homotheties.

Lemma 3. Suppose that the incircle of $A B C$ is tangent to $B C, A C$ and $A B$ at D, E and F. Let M be the midpoint of $B C$. The perpendicular to $B C$ at D, the median $A M$ and the line $E F$ are concurrent.

Proof. Consider the line parallel to $B C$ passing through the intersection P of $A M$ and $E F$. Let it intersect $A B$ and $A C$ at Q and R. It follows that P is the midpoint of $Q R$ since $Q R$ is parallel to $B C$. Let the line parallel to $A C$ through Q intersect $E F$ at S. It follows that $Q S R F$ is a parallelogram since $S F$ bisects $Q R$ and $S Q$ is parallel to $A C$. Since $E A F$ is isosceles, so is $S Q E$. Therefore $Q E=Q S=R F$. Now suppose that $Q R$ intersects the incircle of $A B C$ at U and V. By power of a point, we now have that $Q U \cdot Q V=Q E^{2}=R F^{2}=R V \cdot R U$. Since $Q V-Q U=R V=R U$, we have that $Q V=R U$ and thus P is also the midpoint of $U V$. This implies that $I P$ is perpendicular to $U V$ and therefore $B C$, implying the result.

Our last lemma of this section, is Euler's formula. Note that a fun corollary of Euler's formula is that $R \geq 2 r$. This is another great example of power of a point.

Lemma 4. (Euler's Formula) Let $A B C$ have circumradius R, inradius r and A-exradius r_{a}. Then

1. $O I=\sqrt{R(R-2 r)}$.
2. $O I_{a}=\sqrt{R\left(R+2 r_{a}\right)}$.

Proof. We just prove 1, as the proof of 2 is similar. Let D and E be the midpoints of arcs $\widehat{B C}$ and $\widehat{B A C}$ of Γ. Let F be the point at which the incircle of $A B C$ is tangent to $A C$. Both triangles $E D C$ and $A I C$ are right triangles with angle $\angle I A F=\angle E D C=a / 2$. Therefore $A I / I F=D E / D C$. By the first lemma, $D C=D I$. Substituting $D E=2 R$ and $I F=r$ yields that $A I \cdot I D=2 R r$. Now power of a point applied to I with respect to Γ implies that $R^{2}-O I^{2}=A I \cdot I D=2 R r$.

More Lemmas. The proofs are left to you as exercises.

1. The intersections of the internal and external bisectors of $\angle B A C$ with the perpendicular bisector of $B C$ lie on Γ. This is a common trick to show four points are concyclic.
2. If the incircle and A-excircle of $A B C$ are tangent to $B C$ at D and $E, B D=C E$.
3. If M is the midpoint of arc $\widehat{B A C}$ of Γ, then M is the midpoint of $I_{b} I_{c}$ and the center of the circle through I_{b}, I_{c}, B and C.
4. Let D be the midpoint of the arc $\widehat{B C}$ not containing A of Γ. Suppose that two lines through D intersect $B C$ at P_{1} and P_{2} and Γ at Q_{1} and Q_{2}. Show that $P_{1} P_{2} Q_{1} Q_{2}$ is cyclic and $D I$ is tangent to the circumcircle of $P_{1} I P_{2}$.
5. Suppose that E is the midpoint of the arc $\widehat{B A C}$ of Γ. Suppose P and Q are the points at which the B-excircle and C-excircle touch $A C$ and $A B$, respectively. Show that $E P=E Q$.
6. Let D and E be the midpoints of $\operatorname{arcs} \widehat{A B}$ and $\widehat{A C}$ of Γ, and let P be the midpoint of arc $\widehat{B A C}$. Show that $D A E I$ is a kite and $D P E I$ is a parallelogram.
7. Suppose that the incircle ω of $A B C$ is tangent to $B C, A C$ and $A B$ at D, E and F. Then angle bisector $C I$ intersects $F E$ at a point T on the line adjoining the midpoints of $A B$ and $B C$. It also holds that BFTID is cyclic and $\angle B T C=90^{\circ}$.
8. Suppose that D, E and F are the points at which the incircle of $A B C$ touches $A B, A C$ and $B C$. Let P be the point at which $A F$ intersects the incircle again. Show that the tangent to the incircle at $P, E F$ and $B C$ are concurrent.
9. Suppose that D, E and F are the points at which the incircle of $A B C$ touches $A B, A C$ and $B C$. Let P be the point at which $D E$ intersects $B C$. Show that the radical axis between the incircle and the circle with diameter $I I_{a}$ bisects $P F$.

4 More Triangle Lemmas

Often in problems involving triange centers, points such as the midpoints of the sides, midpoints of arcs, feet of the altitudes, I, O, H, and intersections of $A H, B H$ and $C H$ with Γ are implicitly present. It is worthwhile always checking if drawing in these standard points are useful. It is also important to always look for similar triangles, angle chase and remember to use power of a point when applicable - i.e. always length and angle chase completely.

We now will prove some standard results about the symmedian. Here we construct two points E and F which are essentially B and C inverted about A with a certain radius. Applying inversions or homotheties coupled with reflections to produce antiparallel lines is a tool that comes up every now and then.

Lemma 5. (Symmedian) If M is the midpoint of $B C$, then the symmedian from A is defined to be the line that is the reflection of $A M$ in the bisector of angle $\angle B A C$.

1. If the tangents to Γ at B and C intersect at N, then N lies on the symmedian from A and therefore $\angle B A M=\angle C A N$.
2. If the symmedian from A intersects Γ at D, then $A B / B D=A C / C D$.
3. Let ω_{b} be the circle passing through A, B and tangent to $A C$ at A. Define ω_{c} similarly. Then ω_{b} and ω_{c} intersect again on the A-symmedian.
Proof. Consider the line antiparallel to $B C$ passing through N. Let this line intersect $A B$ and $A C$ at E and F. In other words, let E and F be such that $\angle A E F=c$ and $\angle A F E=b$ and N lies on $E F$. Angle chasing yields that $\angle E B N=c$ and $\angle F C N=b$. Therefore $E N B$ and $F N C$ are isosceles, implying $N E=N B=N C=N F$. Thus N is the midpoint of $F E$. It follows that $A B M C$ is similar to $A F N E$ and thus $A M$ and $A N$ are reflections about the bisector of $\angle B A C$, proving 1. Now some algebra with ratios from similar triangles gives that $A B^{2} / B D^{2}=N D / N A=A C^{2} / C D^{2}$, which proves 2 .

Let $N B$ intersect ω_{b} again at P and $N C$ intersect ω_{c} again at Q. Some angle chasing yields that $P A B$ is similar to $A C B$ and $Q C A$ is similar to $A B C$. It then follows that P, A and Q are collinear and that $P Q B C$ is cyclic. Therefore N has the same power of a point with respect to ω_{b} and ω_{c} and thus lies on the radical axis of the two circles, proving 3.

Next we prove a classical lemma about the orthocenter.
Lemma 6. If D is the point diametrically opposite to A on Γ and M is the midpoint of $B C$, then M is also the midpoint of $H D$. If E and F are the intersections of $A H$ with $B C$ and Γ, respectively, then E is the midpoint of $H F$.

Proof. Angle chasing yields that $\angle H B E=\angle H B F=90^{\circ}-c$ and thus it follows that E is the midpoint of $H F$ since $B E$ is perpendicular to $H F$. Angle chasing also yields that $B H C D$ is a parallelogram, implying that M is the midpoint of $H D$.

We won't prove the last three lemmas of this section, but we highlight them apart from the additional lemmas we list afterwards. I encourage you to prove Lemma 9 on your own.

Lemma 7. (Steiner Line) Suppose that D lies on Γ and P, Q and R are the reflections of D in sides $A B, A C$ and $B C$. Then P, Q and R are collinear and H lies on line $P Q R$.

Lemma 8. (Center of Spiral Similarity) Let $A B$ and $C D$ be two segments, and let lines $A C$ and $B D$ meet at X. Let the circumcircles of $A B X$ and $C D X$ meet again at O. Then O is the center of the spiral similarity that carries $A B$ to $C D$.

Whenever trying to prove a set of circles all have a common point, that point is often the center of some family of spiral similarities.

Lemma 9. (Example Families of Spiral Similarities)

1. Suppose two rays ℓ_{1} and ℓ_{2} both have endpoint A and let P be a fixed point. Let ω be a circle passing through A and P, and let this circle intersect ℓ_{1} and ℓ_{2} at E and F. As ω varies over all such circles, the segments EF are spirally similar with center P.
2. Suppose that P and Q are on sides $A B$ and $A C$ and are such that $B P / P A=A Q / Q C$. All such segments $P Q$ are spirally similar with center on the A-symmedian of $A B C$.
3. Let c be a constant. Suppose two rays ℓ_{1} and ℓ_{2} both have endpoint A. The segments $B C$ with B on ℓ_{1}, C on ℓ_{2} such that $A B+A C=c$ are all spirally similar with a common center of spiral similarity that lies on the bisector of the angle formed by ℓ_{1} and ℓ_{2}.

More Lemmas. The proofs are left to you as exercises.

1. If $B H$ and $C H$ intersect $A C$ and $A B$ at D and E, and M is the midpoint of $B C$, then M is the center of the circle through B, D, E and C, and $M D$ and $M E$ are tangent to the circumcircle of $A D E$.
2. If M is the midpoint of $B C$ then $A H=2 \cdot O M$.
3. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle $A B C$, then G lies on segment $O H$ with $H G=2 \cdot O G$.
4. If $A H, B H$ and $C H$ intersect Γ again at D, E and F, then there is a homothety centered at H sending the triangle formed by projecting H onto the sides of $A B C$ to $D E F$ with ratio 2 .
5. If D, E and F are on Γ then $A D, B E$ and $C F$ are concurrent if and only if
6. (Nine-Point Circle) Let ω denote the circle passing through the midpoints of the sides of $A B C$. Then ω passes through the midpoints of $A H, B H$ and $C H$ and the projections of H onto the sides of $A B C$.
7. Γ is the nine-point circle of the triangle $I_{a} I_{b} I_{c}$.
8. Let D and E be the foot of altitudes from B and C to $A C$ and $A B$. If the circumcircle of $A D E$ intersects Γ again at P, then P, H and M are collinear. Furthermore, $A P, D E$ and $B C$ are concurrent.
9. Suppose that $B I$ and $C I$ intersect $A C$ and $A B$ at P and Q. Then $P Q$ is the radical axis between Γ and the circumcircle of $I_{b} I I_{c}$.
10. Let D, E and F be the feet of the altitudes from A, B and C in triangle $A B C$. Let M be the midpoint of $B C$ and $E F$ intersect Γ again at X and Y. Then X, Y, D and M are concyclic and if $X M$ and $Y M$ intersect the nine-point circle again at P and Q, then the center of spiral similarity mapping $P Q$ to $X Y$ is D.
11. Let P be inside $A B C$ satisfying that $A P \cdot B C=B P \cdot A C=C P \cdot A B$. Show that $\angle B P C=$ $\angle A+60^{\circ}, \angle A P B=\angle C+60^{\circ}$ and $\angle A P C=\angle B+60^{\circ}$.
12. (Fermat Point) Let P, Q and R be outside $A B C$ and satisfying that $P A B, Q A C$ and $R B C$ are equilateral. Show that $A R, B Q$ and $C P$ are concurrent.

5 Circles Tangent to Γ

In this section, we cover a few results about circles tangent to Γ, which have recently become popular because they are difficult to bash. Often problems about tangent circles have solutions using Casey's theorem, but we will focus on more elegant methods here.

Whenever there are two tangent circles, there is a homothety mapping one to the other centered at the point of tangency. Completing these homotheties can be useful, especially when the circle is also tangent to lines in the diagram. Here is a classical result on this topic.

Lemma 10. Suppose that ω is tangent to Γ at A and to $B C$ at D. Then $A D$ bisects angle $\angle B A C$.
Proof. Let $A D$ intersect Γ at P. Consider the homothety with center A mapping ω to Γ. This maps the line $B C$ to the line tangent to Γ at D. Since these two lines are parallel, P must be the midpoint of arc $\widehat{B C}$. Thus the line $A D P$ bisects $\angle B A C$.

A corollary of this result and Pascal's theorem is as follows.
Lemma 11. (Mixtilinear Incircles) Let ω be a circle tangent internally to Γ and to $A B$ and $A C$ at X and Y. Then I is the midpoint of segment $X Y$.

Proof. Let ω be tangent to $A B$ and $A C$ at P and suppose $P X$ and $P Y$ intersect Γ again at X^{\prime} and Y^{\prime}. By Lemma $9, X^{\prime}$ and Y^{\prime} are the midpoints of arcs $\widehat{A B}$ and $\widehat{A C}$, implying that I is the intersection of $C X^{\prime}$ and $B Y^{\prime}$. It follows that X, I and Y are collinear by Pascal's theorem applied to $A Y^{\prime} C P B X^{\prime}$. Since $A I$ bisects $\angle B A C$ and $X A Y$ is isosceles, I must be the midpoint of $X Y$.

This next example is a difficult lemma illustrating several points. This proof we present is based on the proof in Yufei Zhao's handout on Lemmas in Euclidean Geometry.

- Phantom points: Working backwards, we see that if the result is true then AFIM must be cyclic. But it's hard to do anything with this directly so we define F differently so that it's easier to work with. Often its useful to define points as intersections with circles to get nice angle relationships.
- Power of a point is a great way to get angle relationships between points that otherwise are difficult to relate. Here we get nice angles around I to E and M using power of a point.
- Points of tangency between circles are often on the circumcircle of other points in the diagram. In this case, M is on the circumcircle of $A I F$.

Lemma 12. (Curvilinear Incircles) Let D be an arbitrary point on segment BC. Let ω be a circle tangent to $\Gamma, D A$ and $D C$. If ω is tangent to $D A$ and $D C$ at F and E, then I lies on $F E$.
Proof. Let M be the point of tangency between ω and Γ and let K be the midpoint of arc $\widehat{B C}$. We have that A, I and K are collinear and M, E and K are collinear by the previous lemma. Now let F^{\prime} be the second intersection of $E I$ with the circumcircle of $A M I$. Observe that $\angle M F^{\prime} E=$ $\angle M A I=\frac{1}{2} \widehat{M K}=\frac{1}{2} \widehat{M E}$ by the fact that $A M I F^{\prime}$ is cyclic and ω and Γ are homothetic with center M. This implies that F^{\prime} is on ω. Angle chasing gives that $K E C$ and $K C M$ are similar and therefore $K I^{2}=K C^{2}=K E \cdot K M$, which implies that $K I M$ and $K E I$ are similar. Therefore $\angle A F^{\prime} M=\angle A I M=\angle I E K=\angle F^{\prime} E K$, implying that $A F^{\prime}$ is tangent to ω. Thus $F^{\prime}=F$, proving the result.

In general when working with tangent circles, it can also be useful to draw the common tangent line at the point of tangency and consider its intersection P with some other line. This may allow you to define the tangency point using power of a point relations or as the intersection of a circle centered at P with Γ.

A notable problem where the key was to realize that the point of tangency lies on other circumcircles is IMO $2011 \# 6$. We sketch a solution to that problem here. In general it is fairly hard to figure out what is the right circle to choose. I suggest looking for cyclic quadrilaterals in the diagram and trying to guess them based on what would be convenient and yield useful angles.

Example 4. (IMO 2011) Let $A B C$ be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓ_{a}, ℓ_{b} and ℓ_{c} be the lines obtained by reflecting ℓ in the lines $B C, C A$ and $A B$, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_{a}, ℓ_{b} and ℓ_{c} is tangent to the circle Γ.

Proof Sketch. Let A^{\prime}, B^{\prime} and C^{\prime} be the intersections of ℓ_{b} and ℓ_{c}, ℓ_{a} and ℓ_{c}, and ℓ_{a} and ℓ_{b}, respectively. Let P be the point of tangency between Γ and ℓ and let Q be the reflection of P through $B C$. Now let T be the second intersection of the circumcircles of $B B^{\prime} Q$ and $C C^{\prime} Q$. It can be shown that T lies on Γ and the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$ by angle chasing. Similarly, T can be shown to be a point of tangency between the circles by angle chasing. The angle chasing is made easier by first showing that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ meet at the incenter I of $A^{\prime} B^{\prime} C^{\prime}$.

More Lemmas. The proofs are left to you as exercises.

1. Let D be the midpoint of arc $\widehat{B A C}$ and let M be the point at which the circle tangent to $A B, A C$ and Γ is tangent to Γ. Show that D, I and M are collinear.
2. Using the same notation as in 1 , let E be the point at which the incircle of $A B C$ is tangent to $B C$. If $M E$ intersects Γ again at F, show that $A F$ is parallel to $B C$.

6 Some Takeaways

- Figure out what's true: many geometry problems will involve proving an intermediate result.

1. Draw at least one precise diagram, draw in relevant circles and extend lines. Look for concurrencies.
2. Look for quadrilaterals that might be cyclic.
3. Work backwards. What would imply the result? What would be convenient if true?

- Do everything straightforward:

1. Angle chase completely, look for similar triangles and apply power of a point.
2. Draw in implicit points: the midpoints of the sides, midpoints of arcs, feet of the altitudes, I, O, H, the intersections of $A H, B H$ and $C H$ with Γ, etc.

- Relate the unrelated with power of a point.
- Complete transformations: spiral similarities, homotheties, translations and rotations.

1. Draw in the images of points under these transformations.
2. Draw in the center of the transformation.
3. Move angles or segments to more convenient places.

- When there are midpoints: consider homotheties with ratio 2, add more midpoints, complete parallelograms.
- Intersect lines and circumcircles to get angle relationships about points.
- Tangency points between circles:

1. Consider homotheties about the tangency point.
2. Draw the common tangent line, intersect it with some other line P and define the tangency point using power of a point.
3. Look for a circle or some triangle $P Q R$ such that the circumcircle of $P Q R$ passes through the tangency point.

- Phantom points: figure out something true and redefine a point P in an easier way as P^{\prime}. Prove that $P=P^{\prime}$. Often it is useful to define P^{\prime} as the intersection of a line with a circumcircle to get angle relationships about P^{\prime}.
- Mysterious perpendicular lines sometimes can be dealt with by introducing circles centered on one line in order to make the other their radical axis.

7 Other Classical Configurations

Here is a selection of a few other lemmas and configurations that come up often in Olympiads.

1. Let $A B C D$ be a cyclic quadrilateral such that $A B$ and $C D$ intersect at P and diagonals $A C$ and $B D$ intersect at Q. Then:

$$
\frac{B Q}{Q D}=\frac{A B \cdot B C}{A D \cdot D C} \quad \text { and } \quad \frac{P B}{P A}=\frac{B C \cdot B D}{A C \cdot A D}
$$

2. If $A B C D$ is a quadrilateral such that $\angle B C D=90^{\circ}+\frac{1}{2} \angle D A B$ then it follows that A is the circumcenter of $B C D$.
3. (Pole-Polar) Let X lie on the line joining the points of tangency of the tangents from Y to a circle Ω. Then Y lies on the line joining the points of tangency of the tangents from X to Ω.
4. (Ceva's Theorem) Let $A B C$ be a triangle and D, E and F be on the lines $B C, A C$ and $A B$ such that an even number are on the extensions of the sides (zero or two). Then $A D, B E$ and $C F$ are concurrent if and only if

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

5. (Menelaus' Theorem) Let $A B C$ be a triangle and D, E and F be on the lines $B C, A C$ and $A B$ such that an odd number are on the extensions of the sides (one or three). Then D, E and F are collinear if and only if

$$
\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1
$$

6. (Trig Ceva) Let $A B C$ be a triangle and D, E and F be on the lines $B C, A C$ and $A B$ such that an even number are on the extensions of the sides (zero or two). Then $A D, B E$ and $C F$ are concurrent if and only if

$$
\frac{\sin (\angle A B E)}{\sin (\angle C B E)} \cdot \frac{\sin (\angle B C F)}{\sin (\angle A C F)} \cdot \frac{\sin (\angle C A D)}{\sin (\angle B A D)}=1
$$

7. (Casey's Theorem) If A_{1}, B_{1} and C_{1} are points on the sides $B C, A C$ and $A B$ of a triangle $A B C$, then the perpendiculars to their respective sides at these three points are concurrent if and only if $B A_{1}^{2}-C A_{1}^{2}+C B_{1}^{2}-A B_{1}^{2}+A C_{1}^{2}-B C_{1}^{2}=0$.
8. (Apollonius Circle) Let $A B C$ be a given triangle and let P be a point such that $A B / B C=$ $A P / P C$. If the internal and external bisectors of angle $\angle A B C$ meet line $A C$ at Q and R, then P lies on the circle with diameter $Q R$.
9. Let $A B C D$ be a convex quadrilateral. The four interior angle bisectors of $A B C D$ are concurrent and there exists a circle Γ tangent to the four sides of $A B C D$ if and only if $A B+C D=A D+B C$.
10. (Simson Line) Let M, N and P be the projections of a point Q onto the sides of a triangle $A B C$. Then Q lies on the circumcircle of $A B C$ if and only if M, N and P are collinear. If Q lies on the circumcircle of $A B C$, then the reflections of Q in the sides of $A B C$ are collinear and pass through the orthocenter of the triangle.
11. (Radical Axis to a Point) Suppose that Γ is a circle and P and Q are points such that P lies on line passing through the midpoints of the tangents from Q to Γ, then the length of the tangent from P to γ is equal to $P Q$.
12. (Monge's Theorem) Given three circles Γ_{1}, Γ_{2} and Γ_{3}. If P, Q and R are the external centers of homothety between pairs of the three circles, then P, Q and R are collinear. If P and Q are internal centers of homothety, then P, Q and R are also collinear.
13. (Pascal's Theorem) If A, B, C, D, E, F are points on a circle then the intersections of the pairs of lines $A B$ and $D E, B C$ and $E F, C D$ and $F A$ lie on a line.
14. Pascal's theorem is true when points are not necessarily distinct and many of its applications concern tangent lines when some of the six points are equal.
15. (Pappus' Theorem) If A, C and E lie on one line ℓ_{1} and B, D and F lie on a line ℓ_{2}, then the intersections of the pairs of lines $A B$ and $D E, B C$ and $E F, C D$ and $F A$ lie on a line.
16. (Brianchon's Theorem) If $A B C D E F$ is a hexagon with an inscribed circle then $A D, B E$ and $C F$ are concurrent.
17. (Desargues Theorem) Let $A B C$ and $X Y Z$ be triangles. Let D, E, F be the intersections of the pairs of lines $A B$ and $X Y, B C$ and $Y Z, A C$ and $X Z$. Then D, E and F are collinear if and only if $A X, B Y$ and $C Z$ are concurrent.
18. (Casey's Theorem) Let $O_{1}, O_{2}, O_{3}, O_{4}$ be four circles tangent to a circle O. Let $t_{i j}$ be the length of the external common tangent between $O_{i} O_{j}$ if O_{i} and O_{j} are tangent to O from the same side and the length of the internal common tangent otherwise. Then

$$
t_{12} \cdot t_{34}+t_{41} \cdot t_{23}=t_{13} \cdot t_{24}
$$

The converse is also true: if the above equality holds then $O_{1}, O_{2}, O_{3}, O_{4}$ are tangent to O.
19. (Simson Line) Let M, N and P be the projections of a point Q onto the sides of a triangle $A B C$. Then Q lies on the circumcircle of $A B C$ if and only if M, N and P are collinear. If Q lies on the circumcircle of $A B C$, then the reflections of Q in the sides of $A B C$ are collinear and pass through the orthocenter of the triangle.
20. (Butterfly Theorem) Let M be the midpoint of a chord $X Y$ of a circle Γ. The chords $A B$ and $C D$ pass through M. If $A D$ and $B C$ intersect chord $X Y$ at P and Q, then M is also the midpoint of $P Q$.
21. (Broken Chord Theorem) Let E is the midpoint of major arc $\widehat{A B C}$ of the circumcircle of a triangle $A B C$ where $A B<B C$. If D is the projection of E onto $B C$, then $A B+B D=D C$.
22. (Feuerbach's Theorem) The nine-point circle is tangent to the incircle and excircles.
23. (Miquel Point) Let D, E and F be points on sides $B C, A C$ and $A B$ of a triangle $A B C$. Then the circumcircles of $A E F, B D F$ and $C D E$ are concurrent.
24. (Isogonal Conjugates) Let $A B C$ be a triangle and P be a point. If the reflection of $B P$ in the angle bisector of $\angle A B C$ and the reflection of $C P$ in the angle bisector $\angle A C B$ intersect at Q, then Q lies on the reflection of $C P$ in the angle bisector of $\angle A C B$.

8 Problems

The problems here are a few examples from past IMO Shortlists. Some directly use the lemmas above while others do not.

1. Given three fixed pairwisely distinct points A, B, C lying on one straight line in this order. Let G be a circle passing through A and C whose center does not lie on the line $A C$. The tangents to G at A and C intersect each other at a point P. The segment $P B$ meets the circle G at Q. Show that the point of intersection of the angle bisector of the angle $A Q C$ with the line $A C$ does not depend on the choice of the circle G.
2. Let $A B C D$ be a cyclic quadrilateral whose diagonals $A C$ and $B D$ meet at E. The extensions of the sides $A D$ and $B C$ beyond A and B meet at F. Let G be the point such that $E C G D$ is a parallelogram, and let H be the image of E under reflection in $A D$. Prove that D, H, F, G are concyclic.
3. A convex quadrilateral $A B C D$ has perpendicular diagonals. The perpendicular bisectors of the sides $A B$ and $C D$ meet at a unique point P inside $A B C D$. Prove that the quadrilateral $A B C D$ is cyclic if and only if triangles $A B P$ and $C D P$ have equal areas.
4. Let $A B C D$ be a fixed convex quadrilateral with $B C=D A$ and $B C$ not parallel with $D A$. Let two variable points E and F lie of the sides $B C$ and $D A$, respectively and satisfy $B E=D F$. The lines $A C$ and $B D$ meet at P, the lines $B D$ and $E F$ meet at Q, the lines $E F$ and $A C$ meet at R. Prove that the circumcircles of the triangles $P Q R$, as E and F vary, have a common point other than P.
5. Let O be the circumcenter and H the orthocenter of an acute triangle $A B C$. Show that there exist points D, E, and F on sides $B C, C A$, and $A B$ respectively such that

$$
O D+D H=O E+E H=O F+F H
$$

and the lines $A D, B E$, and $C F$ are concurrent.
6. In an acute triangle $A B C$ the points D, E and F are the feet of the altitudes through A, B and C respectively. The incenters of the triangles $A E F$ and $B D F$ are I_{1} and I_{2} respectively; the circumcenters of the triangles $A C I_{1}$ and $B C I_{2}$ are O_{1} and O_{2} respectively. Prove that $I_{1} I_{2}$ and $O_{1} O_{2}$ are parallel.
7. Let $A B C$ be a triangle with $A B \neq A C$ and circumcenter O. The bisector of $\angle B A C$ intersects $B C$ at D. Let E be the reflection of D with respect to the midpoint of $B C$. The lines through D and E perpendicular to $B C$ intersect the lines $A O$ and $A D$ at X and Y respectively. Prove that the quadrilateral $B X C Y$ is cyclic.
8. Let $A B C$ be a triangle, and M the midpoint of its side $B C$. Let γ be the incircle of triangle $A B C$. The median $A M$ of triangle $A B C$ intersects the incircle γ at two points K and L. Let the lines passing through K and L, parallel to $B C$, intersect the incircle γ again in two points X and Y. Let the lines $A X$ and $A Y$ intersect $B C$ again at the points P and Q. Prove that $B P=C Q$.
9. Let $A B C$ be an acute triangle with circumcircle Ω. Let B_{0} be the midpoint of $A C$ and let C_{0} be the midpoint of $A B$. Let D be the foot of the altitude from A and let G be the centroid of the triangle $A B C$. Let ω be a circle through B_{0} and C_{0} that is tangent to the circle Ω at a point $X \neq A$. Prove that the points D, G and X are collinear.
10. Let $A B C D E$ be a convex pentagon such that $B C \| A E, A B=B C+A E$, and $\angle A B C=$ $\angle C D E$. Let M be the midpoint of $C E$, and let O be the circumcenter of triangle $B C D$. Given that $\angle D M O=90^{\circ}$, prove that $2 \angle B D A=\angle C D E$.
11. Let $A H_{1}, \mathrm{BH}_{2}, \mathrm{CH}_{3}$ be the altitudes of an acute angled triangle $A B C$. Its incircle touches the sides $B C, A C$ and $A B$ at T_{1}, T_{2} and T_{3} respectively. Consider the symmetric images of the lines $H_{1} H_{2}, H_{2} H_{3}$ and $H_{3} H_{1}$ with respect to the lines $T_{1} T_{2}, T_{2} T_{3}$ and $T_{3} T_{1}$. Prove that these images form a triangle whose vertices lie on the incircle of $A B C$.
12. Let $A B C D E F$ be a convex hexagon all of whose sides are tangent to a circle ω with centre O. Suppose that the circumcircle of triangle $A C E$ is concentric with ω. Let J be the foot of
the perpendicular from B to $C D$. Suppose that the perpendicular from B to $D F$ intersects the line $E O$ at a point K. Let L be the foot of the perpendicular from K to $D E$. Prove that $D J=D L$.
13. Let $A B C D$ be a circumscribed quadrilateral. Let g be a line through A which meets the segment $B C$ in M and the line $C D$ in N. Denote by I_{1}, I_{2} and I_{3} the incenters of $\triangle A B M$, $\triangle M N C$ and $\triangle N D A$, respectively. Prove that the orthocenter of $\triangle I_{1} I_{2} I_{3}$ lies on g.

9 Hints

1. (2003 G2) Introduce the other intersection of $P B$ with the circle. Use similar triangles to find useful ratios of sides and do a bit of algebra.
2. (2012 G2) What pair of similar triangles would imply that D, H, F and G are concyclic?
3. (1998 G1) Let Q be the intersection of the diagonals and think about $M P Q N$ where M and N are the midpoints of $A D$ and $B C$.
4. (2005 G4) What transformations are present in the diagram? Define the center of this transformation.
5. (2000 G3) Remember the lemma that the reflection of H in the line $B C$ lies on Γ.
6. (2012 G3) Draw in the circumcircles $A I_{1} C$ and $B I_{2} C$. What do you notice? Now assume the desired result and work backwards to figure out what is true.
7. (2012 G4) Draw in the midpoints of $\operatorname{arcs} \widehat{B C}$ and $\widehat{B A C}$. This is in general a good idea whenever there is an incenter, angle bisector or sometimes even the circumcenter or midpoint of a side.
8. (2005 G6) Try to reduce the problem to a result not involving P, Q, X or Y. Is any of the lemmas from this handout particularly useful?
9. (2011 G4) Where does the tangent to Ω at X intersect $B_{0} C_{0}$? Are there any more natural points to introduce into the diagram?
10. (2010 G5) Two general principles for creating new points to make use of midpoints are: (1) reflect points through a midpoint to produce a parallelogram, and (2) add in more midpoints. Whenever you are given a sum of lengths condition such as $A B=B C+A E$, it is often useful to try construct the sum of length e.g. create a segment of length $B C+A E$ by adding a new point to the diagram. Try applying all of this here.
11. (2000 G8) Figure out the orientations of the sides of the triangle and reverse engineer H_{i} from the points of the triangle. Show that it suffices to prove that these phantom points H_{i}^{\prime} are on the tangents to the incircle at T_{i}. Rephrasing what you want to prove, you should arrive at a statement involving a triangle $P Q R$, the midpoints of the major arcs of its circumcircle and reflections of lines intersecting on a tangent to the circumcircle.
12. (2011 G7) The difficult line here is the perpendicular from B to $D F$. Try to make this into the radical axis between two circles. In general it is worth trying to make mysterious perpendicular lines into radical axes by introducing circles.
13. (2009 G8) What point in the diagram might lie on the circumcircle of $I_{1} I_{2} I_{3}$? Prove it.
