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1 Notation

Throughout this note, ABC will denote a triangle with incenter I, circumcircle Γ, circumcenter
O, orthocenter H and excenters Ia, Ib and Ic. We will also denote the angles ∠A,∠B and ∠C by
a, b and c, respectively. We won’t worry too much about configuration issues in this note (but you
should in your write-ups!). Many of the lemmas and configurations presented here are from Yufei
Zhao’s note Lemmas in Euclidean Geometry, which is a great reference on the subject.

2 An Example Lemma

There are many lemmas that come up in various Olympiad geometry problems, the vast majority
of which are not known by a name or deemed to be “well-known”. In this note, we will try to
sample a mixture of well-known and relatively unknown lemmas. Some of these lemmas are quite
easy to prove and are primarily useful because they give you one more thing that is true for free
when solving a problem. Other lemmas would themselves yield quite good Olympiad problems and
involve a wide range of techniques.

The first lemma we present has a nice proof making use of one of the most important facts in
Olympiad geometry – spiral similarity. This says that if OAB and OCD are similar triangles with
the same orientation, then OAC and OBD are also similar.

Example 1. Let D be the point at which the incircle is tangent to BC and suppose that P and Q
lie on segments BI and CI such that ∠PAQ = 1

2∠BAC. Then ∠PDQ = 90◦.

Proof. Let E be the intersection of the line perpendicular to BI through P with AB. Define F
similarly on AC. Note that BEP and BID are similar right triangles, implying by spiral similarity
that BEI and BPD are similar. Thus ∠BDP = ∠BIE. Similarly ∠CDQ = ∠CIF . Thus it
suffices to show that ∠BIE + ∠CIF = 90◦.

Now note that ∠AEP = 90◦ + b/2 = ∠AIQ. Note that ∠PAQ = 1
2∠BAC implies that

∠EAP = ∠IAQ. Thus AEP and AIQ are similar, implying by spiral similarity that AEI and APQ
are similar. By symmetry, these are both also similar to AIF . Now it follows that ∠BIC+∠EIF =
∠BIC + ∠APQ+ ∠AQP = 90◦ + a/2 + 180◦ − a/2 = 270◦, implying ∠BIE + ∠CIF = 90◦.

The main motivation for adding the points E and F is that we first notice ∠EAP = ∠IAQ,
which means there is a hidden spiral similarity about A mapping these angles to one another.
This prompts us to at least try to “complete the transformation”. A natural way to do this is to
consider the spiral similarity mapping AQ to AP and to define E as the point which I is mapped
to. After we have defined E in this way, everything falls into place. Completing transformations is
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a really useful way (but certainly not the only way) to motivate adding “magic points” that solve
diagrams. A lot of key points are either the centers of transformations existing in the diagram
or the images of points under transformations. Spiral similarities are always present, rotations
are present whenever there is an isosceles triangle, homotheties are present in all trapezoids and
tangent circles and translations are present in any parallelogram.

We next will give an alternative proof which is admittedly contrived and far less motivated.
However, it at least proves a little bit more and explores a slightly different configuration. It also
demonstrates the phantom point method, where we define a point D′ alternatively in a way that
is easier to use and then show that D = D′.

Alternative Proof. Consider the point F on BC such that AP bisects ∠BAF . It follows since
∠PAQ = 1

2∠BAC that AQ bisects ∠CAF . Thus P and Q are the incenters of BAF and CAF .
Let the other internal tangent between the incircles of BAF and CAF intersect BC again at D′.
Suppose that the incircles of BAF and CAF are tangent to BC at X and Y . Note that FX −FY
is the length of the common tangent between the two incircles and thus equal to D′Y −D′X. Since
D′X + D′Y = XY = FX + FY , it follows that FY = D′X. Therefore BD′ = BX + FY =
1
2(AB + BF − AF ) + 1

2(AF + FC − AC) = 1
2(AB + BC − AC) = BD. Thus D = D′. Since PD

and QD bisect the angles formed by the other common tangent to the incircles of BAF and CAF
and BC, it follows that ∠PDQ = 90◦.

3 Incenter, Excenters and Midpoints of Arcs

In this section, we go over a few triangle lemmas and results that come up fairly frequently. We
begin with a classical lemma.

Lemma 1. Suppose that D is the midpoint of the arc B̂C not containing A of Γ, then D is the
midpoint of IIa and the center of a circle passing through B, I, C and Ia.

Proof. Since A, I and D are collinear, a quick angle chase yields that ∠DIB = ∠DBI = 90◦− c/2.
Similarly, an angle chase yields ∠DIaB = ∠DBIa = c/2, implying the result.

The next example we will show illustrates the usefulness of power of a point. In this example,
it initially seems hard to relate I to either M or E. Power of a point can in general be useful for
finding angles about seemingly unrelated points.

Example 2. Suppose that E is the midpoint of arc B̂AC and M is the midpoint of side BC. Then
AI is tangent to the circumcircle of EIM .

Proof. Let D be the midpoint of arc B̂C. Note that DEB is a right triangle since DE is a diameter
of Γ and M is the projection of B onto DE, which yields that DB2 = DM ·DE. It follows by the
previous lemma now that DB = DI and hence DI2 = DB2 = DM ·DE, implying the result by
power of a point.

Next we prove a classical lemma by completing a homothety present in the diagram – another
“completing the transformation” style proof. In general, whenever there are circles tangent to sides,
tangent circles, it is useful to consider completing homotheties.
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Lemma 2. Suppose that incircle and A-excircle of ABC are tangent to BC at M and N , then
AN passes through the point diametrically opposite to M on ω and AM passes through the point
diametrically opposite to N on ωa.

Proof. Consider the homothety with center A mapping the A-excircle to the incircle of ABC. This
maps the point N to N ′ on the incircle such that the tangent to the incircle at N ′ is parallel to
BC. This is the point diametrically opposite M . The other result follows similarly.

In applications of power of a point or homothety, it often can be useful to introduce new circles
as in the following example.

Example 3. Let D be the foot of the altitude from A to BC, let M be the midpoint of AD and let
K be the point of tangency between the incircle of ABC and BC. Then Ia,K and M are collinear.

Proof. Consider the circle ω with diameter AD. Let P be the point diametrically opposite to the
point of tangency between the A-excircle and BC. Note that AP must intersect BC at the center
of the internal homothety mapping ω to the A-excircle. By the previous lemma, AP intersects BC
at K. The result follows since the centers of the two circles and K must be collinear.

Sometimes a line, point or other object is in a kind of awkward place and it would be much
more convenient to move it elsewhere i.e. the angles around some point are completely unrelated
to the rest of the diagram. Applying some sort of transformation (a homothety, rotation, spiral
similarity or translation) is usually the right way to move it around. The key is to move the object
around in such a way that its important properties are preserved. In the next lemma, a segment
is in the wrong place, so we move it to a more convenient place with a homothety. The key is we
only care about ratios of its subsegments, which are preserved under homotheties.

Lemma 3. Suppose that the incircle of ABC is tangent to BC, AC and AB at D, E and F . Let
M be the midpoint of BC. The perpendicular to BC at D, the median AM and the line EF are
concurrent.

Proof. Consider the line parallel to BC passing through the intersection P of AM and EF . Let
it intersect AB and AC at Q and R. It follows that P is the midpoint of QR since QR is parallel
to BC. Let the line parallel to AC through Q intersect EF at S. It follows that QSRF is
a parallelogram since SF bisects QR and SQ is parallel to AC. Since EAF is isosceles, so is
SQE. Therefore QE = QS = RF . Now suppose that QR intersects the incircle of ABC at U
and V . By power of a point, we now have that QU · QV = QE2 = RF 2 = RV · RU . Since
QV − QU = RV = RU , we have that QV = RU and thus P is also the midpoint of UV . This
implies that IP is perpendicular to UV and therefore BC, implying the result.

Our last lemma of this section, is Euler’s formula. Note that a fun corollary of Euler’s formula
is that R ≥ 2r. This is another great example of power of a point.

Lemma 4. (Euler’s Formula) Let ABC have circumradius R, inradius r and A-exradius ra. Then

1. OI =
√
R(R− 2r).

2. OIa =
√
R(R+ 2ra).
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Proof. We just prove 1, as the proof of 2 is similar. Let D and E be the midpoints of arcs B̂C and
B̂AC of Γ. Let F be the point at which the incircle of ABC is tangent to AC. Both triangles EDC
and AIC are right triangles with angle ∠IAF = ∠EDC = a/2. Therefore AI/IF = DE/DC. By
the first lemma, DC = DI. Substituting DE = 2R and IF = r yields that AI · ID = 2Rr. Now
power of a point applied to I with respect to Γ implies that R2 −OI2 = AI · ID = 2Rr.

More Lemmas. The proofs are left to you as exercises.

1. The intersections of the internal and external bisectors of ∠BAC with the perpendicular
bisector of BC lie on Γ. This is a common trick to show four points are concyclic.

2. If the incircle and A-excircle of ABC are tangent to BC at D and E, BD = CE.

3. If M is the midpoint of arc B̂AC of Γ, then M is the midpoint of IbIc and the center of the
circle through Ib, Ic, B and C.

4. Let D be the midpoint of the arc B̂C not containing A of Γ. Suppose that two lines through
D intersect BC at P1 and P2 and Γ at Q1 and Q2. Show that P1P2Q1Q2 is cyclic and DI is
tangent to the circumcircle of P1IP2.

5. Suppose that E is the midpoint of the arc B̂AC of Γ. Suppose P and Q are the points at
which the B-excircle and C-excircle touch AC and AB, respectively. Show that EP = EQ.

6. Let D and E be the midpoints of arcs ÂB and ÂC of Γ, and let P be the midpoint of arc
B̂AC. Show that DAEI is a kite and DPEI is a parallelogram.

7. Suppose that the incircle ω of ABC is tangent to BC, AC and AB at D, E and F . Then
angle bisector CI intersects FE at a point T on the line adjoining the midpoints of AB and
BC. It also holds that BFTID is cyclic and ∠BTC = 90◦.

8. Suppose that D,E and F are the points at which the incircle of ABC touches AB,AC and
BC. Let P be the point at which AF intersects the incircle again. Show that the tangent to
the incircle at P , EF and BC are concurrent.

9. Suppose that D,E and F are the points at which the incircle of ABC touches AB,AC and
BC. Let P be the point at which DE intersects BC. Show that the radical axis between the
incircle and the circle with diameter IIa bisects PF .

4 More Triangle Lemmas

Often in problems involving triange centers, points such as the midpoints of the sides, midpoints
of arcs, feet of the altitudes, I, O, H, and intersections of AH,BH and CH with Γ are implicitly
present. It is worthwhile always checking if drawing in these standard points are useful. It is also
important to always look for similar triangles, angle chase and remember to use power of a point
when applicable – i.e. always length and angle chase completely.

We now will prove some standard results about the symmedian. Here we construct two points
E and F which are essentially B and C inverted about A with a certain radius. Applying inversions
or homotheties coupled with reflections to produce antiparallel lines is a tool that comes up every
now and then.
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Lemma 5. (Symmedian) If M is the midpoint of BC, then the symmedian from A is defined to
be the line that is the reflection of AM in the bisector of angle ∠BAC.

1. If the tangents to Γ at B and C intersect at N , then N lies on the symmedian from A and
therefore ∠BAM = ∠CAN .

2. If the symmedian from A intersects Γ at D, then AB/BD = AC/CD.

3. Let ωb be the circle passing through A, B and tangent to AC at A. Define ωc similarly. Then
ωb and ωc intersect again on the A-symmedian.

Proof. Consider the line antiparallel to BC passing through N . Let this line intersect AB and AC
at E and F . In other words, let E and F be such that ∠AEF = c and ∠AFE = b and N lies on EF .
Angle chasing yields that ∠EBN = c and ∠FCN = b. Therefore ENB and FNC are isosceles,
implying NE = NB = NC = NF . Thus N is the midpoint of FE. It follows that ABMC is
similar to AFNE and thus AM and AN are reflections about the bisector of ∠BAC, proving 1.
Now some algebra with ratios from similar triangles gives that AB2/BD2 = ND/NA = AC2/CD2,
which proves 2.

Let NB intersect ωb again at P and NC intersect ωc again at Q. Some angle chasing yields
that PAB is similar to ACB and QCA is similar to ABC. It then follows that P,A and Q are
collinear and that PQBC is cyclic. Therefore N has the same power of a point with respect to ωb

and ωc and thus lies on the radical axis of the two circles, proving 3.

Next we prove a classical lemma about the orthocenter.

Lemma 6. If D is the point diametrically opposite to A on Γ and M is the midpoint of BC, then
M is also the midpoint of HD. If E and F are the intersections of AH with BC and Γ, respectively,
then E is the midpoint of HF .

Proof. Angle chasing yields that ∠HBE = ∠HBF = 90◦ − c and thus it follows that E is the
midpoint of HF since BE is perpendicular to HF . Angle chasing also yields that BHCD is a
parallelogram, implying that M is the midpoint of HD.

We won’t prove the last three lemmas of this section, but we highlight them apart from the
additional lemmas we list afterwards. I encourage you to prove Lemma 9 on your own.

Lemma 7. (Steiner Line) Suppose that D lies on Γ and P , Q and R are the reflections of D in
sides AB,AC and BC. Then P , Q and R are collinear and H lies on line PQR.

Lemma 8. (Center of Spiral Similarity) Let AB and CD be two segments, and let lines AC and
BD meet at X. Let the circumcircles of ABX and CDX meet again at O. Then O is the center
of the spiral similarity that carries AB to CD.

Whenever trying to prove a set of circles all have a common point, that point is often the center
of some family of spiral similarities.

Lemma 9. (Example Families of Spiral Similarities)

1. Suppose two rays `1 and `2 both have endpoint A and let P be a fixed point. Let ω be a circle
passing through A and P , and let this circle intersect `1 and `2 at E and F . As ω varies over
all such circles, the segments EF are spirally similar with center P .

5 of 14



2017 IMO Training Classical Geometry Configurations Matthew Brennan

2. Suppose that P and Q are on sides AB and AC and are such that BP/PA = AQ/QC. All
such segments PQ are spirally similar with center on the A-symmedian of ABC.

3. Let c be a constant. Suppose two rays `1 and `2 both have endpoint A. The segments BC
with B on `1, C on `2 such that AB +AC = c are all spirally similar with a common center
of spiral similarity that lies on the bisector of the angle formed by `1 and `2.

More Lemmas. The proofs are left to you as exercises.

1. If BH and CH intersect AC and AB at D and E, and M is the midpoint of BC, then
M is the center of the circle through B,D,E and C, and MD and ME are tangent to the
circumcircle of ADE.

2. If M is the midpoint of BC then AH = 2 ·OM .

3. (Euler Line) If O, H and G are the circumcenter, orthocenter and centroid of a triangle ABC,
then G lies on segment OH with HG = 2 ·OG.

4. If AH,BH and CH intersect Γ again at D,E and F , then there is a homothety centered at
H sending the triangle formed by projecting H onto the sides of ABC to DEF with ratio 2.

5. If D,E and F are on Γ then AD,BE and CF are concurrent if and only if

6. (Nine-Point Circle) Let ω denote the circle passing through the midpoints of the sides of
ABC. Then ω passes through the midpoints of AH,BH and CH and the projections of H
onto the sides of ABC.

7. Γ is the nine-point circle of the triangle IaIbIc.

8. Let D and E be the foot of altitudes from B and C to AC and AB. If the circumcircle of
ADE intersects Γ again at P , then P,H and M are collinear. Furthermore, AP , DE and
BC are concurrent.

9. Suppose that BI and CI intersect AC and AB at P and Q. Then PQ is the radical axis
between Γ and the circumcircle of IbIIc.

10. Let D,E and F be the feet of the altitudes from A, B and C in triangle ABC. Let M be the
midpoint of BC and EF intersect Γ again at X and Y . Then X,Y,D and M are concyclic
and if XM and YM intersect the nine-point circle again at P and Q, then the center of spiral
similarity mapping PQ to XY is D.

11. Let P be inside ABC satisfying that AP ·BC = BP ·AC = CP ·AB. Show that ∠BPC =
∠A+ 60◦, ∠APB = ∠C + 60◦ and ∠APC = ∠B + 60◦.

12. (Fermat Point) Let P,Q and R be outside ABC and satisfying that PAB,QAC and RBC
are equilateral. Show that AR,BQ and CP are concurrent.
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5 Circles Tangent to Γ

In this section, we cover a few results about circles tangent to Γ, which have recently become
popular because they are difficult to bash. Often problems about tangent circles have solutions
using Casey’s theorem, but we will focus on more elegant methods here.

Whenever there are two tangent circles, there is a homothety mapping one to the other centered
at the point of tangency. Completing these homotheties can be useful, especially when the circle is
also tangent to lines in the diagram. Here is a classical result on this topic.

Lemma 10. Suppose that ω is tangent to Γ at A and to BC at D. Then AD bisects angle ∠BAC.

Proof. Let AD intersect Γ at P . Consider the homothety with center A mapping ω to Γ. This
maps the line BC to the line tangent to Γ at D. Since these two lines are parallel, P must be the
midpoint of arc B̂C. Thus the line ADP bisects ∠BAC.

A corollary of this result and Pascal’s theorem is as follows.

Lemma 11. (Mixtilinear Incircles) Let ω be a circle tangent internally to Γ and to AB and AC
at X and Y . Then I is the midpoint of segment XY .

Proof. Let ω be tangent to AB and AC at P and suppose PX and PY intersect Γ again at X ′

and Y ′. By Lemma 9, X ′ and Y ′ are the midpoints of arcs ÂB and ÂC, implying that I is the
intersection of CX ′ and BY ′. It follows that X, I and Y are collinear by Pascal’s theorem applied
to AY ′CPBX ′. Since AI bisects ∠BAC and XAY is isosceles, I must be the midpoint of XY .

This next example is a difficult lemma illustrating several points. This proof we present is based
on the proof in Yufei Zhao’s handout on Lemmas in Euclidean Geometry.

• Phantom points: Working backwards, we see that if the result is true then AFIM must be
cyclic. But it’s hard to do anything with this directly so we define F differently so that it’s
easier to work with. Often its useful to define points as intersections with circles to get nice
angle relationships.

• Power of a point is a great way to get angle relationships between points that otherwise are
difficult to relate. Here we get nice angles around I to E and M using power of a point.

• Points of tangency between circles are often on the circumcircle of other points in the diagram.
In this case, M is on the circumcircle of AIF .

Lemma 12. (Curvilinear Incircles) Let D be an arbitrary point on segment BC. Let ω be a circle
tangent to Γ, DA and DC. If ω is tangent to DA and DC at F and E, then I lies on FE.

Proof. Let M be the point of tangency between ω and Γ and let K be the midpoint of arc B̂C.
We have that A, I and K are collinear and M,E and K are collinear by the previous lemma. Now
let F ′ be the second intersection of EI with the circumcircle of AMI. Observe that ∠MF ′E =
∠MAI = 1

2M̂K = 1
2M̂E by the fact that AMIF ′ is cyclic and ω and Γ are homothetic with

center M . This implies that F ′ is on ω. Angle chasing gives that KEC and KCM are similar
and therefore KI2 = KC2 = KE ·KM , which implies that KIM and KEI are similar. Therefore
∠AF ′M = ∠AIM = ∠IEK = ∠F ′EK, implying that AF ′ is tangent to ω. Thus F ′ = F , proving
the result.
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In general when working with tangent circles, it can also be useful to draw the common tangent
line at the point of tangency and consider its intersection P with some other line. This may allow
you to define the tangency point using power of a point relations or as the intersection of a circle
centered at P with Γ.

A notable problem where the key was to realize that the point of tangency lies on other cir-
cumcircles is IMO 2011 #6. We sketch a solution to that problem here. In general it is fairly hard
to figure out what is the right circle to choose. I suggest looking for cyclic quadrilaterals in the
diagram and trying to guess them based on what would be convenient and yield useful angles.

Example 4. (IMO 2011) Let ABC be an acute triangle with circumcircle Γ. Let ` be a tangent
line to Γ, and let `a, `b and `c be the lines obtained by reflecting ` in the lines BC, CA and AB,
respectively. Show that the circumcircle of the triangle determined by the lines `a, `b and `c is
tangent to the circle Γ.

Proof Sketch. Let A′, B′ and C ′ be the intersections of `b and `c, `a and `c, and `a and `b, respec-
tively. Let P be the point of tangency between Γ and ` and let Q be the reflection of P through
BC. Now let T be the second intersection of the circumcircles of BB′Q and CC ′Q. It can be
shown that T lies on Γ and the circumcircle of A′B′C ′ by angle chasing. Similarly, T can be shown
to be a point of tangency between the circles by angle chasing. The angle chasing is made easier
by first showing that AA′, BB′ and CC ′ meet at the incenter I of A′B′C ′.

More Lemmas. The proofs are left to you as exercises.

1. Let D be the midpoint of arc B̂AC and let M be the point at which the circle tangent to
AB,AC and Γ is tangent to Γ. Show that D, I and M are collinear.

2. Using the same notation as in 1, let E be the point at which the incircle of ABC is tangent
to BC. If ME intersects Γ again at F , show that AF is parallel to BC.

6 Some Takeaways

• Figure out what’s true: many geometry problems will involve proving an intermediate result.

1. Draw at least one precise diagram, draw in relevant circles and extend lines. Look for
concurrencies.

2. Look for quadrilaterals that might be cyclic.

3. Work backwards. What would imply the result? What would be convenient if true?

• Do everything straightforward:

1. Angle chase completely, look for similar triangles and apply power of a point.

2. Draw in implicit points: the midpoints of the sides, midpoints of arcs, feet of the alti-
tudes, I, O, H, the intersections of AH,BH and CH with Γ, etc.

• Relate the unrelated with power of a point.

• Complete transformations: spiral similarities, homotheties, translations and rotations.
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1. Draw in the images of points under these transformations.

2. Draw in the center of the transformation.

3. Move angles or segments to more convenient places.

• When there are midpoints: consider homotheties with ratio 2, add more midpoints, complete
parallelograms.

• Intersect lines and circumcircles to get angle relationships about points.

• Tangency points between circles:

1. Consider homotheties about the tangency point.

2. Draw the common tangent line, intersect it with some other line P and define the
tangency point using power of a point.

3. Look for a circle or some triangle PQR such that the circumcircle of PQR passes through
the tangency point.

• Phantom points: figure out something true and redefine a point P in an easier way as P ′.
Prove that P = P ′. Often it is useful to define P ′ as the intersection of a line with a
circumcircle to get angle relationships about P ′.

• Mysterious perpendicular lines sometimes can be dealt with by introducing circles centered
on one line in order to make the other their radical axis.

7 Other Classical Configurations

Here is a selection of a few other lemmas and configurations that come up often in Olympiads.

1. Let ABCD be a cyclic quadrilateral such that AB and CD intersect at P and diagonals AC
and BD intersect at Q. Then:

BQ

QD
=
AB ·BC
AD ·DC

and
PB

PA
=
BC ·BD
AC ·AD

2. If ABCD is a quadrilateral such that ∠BCD = 90◦ + 1
2∠DAB then it follows that A is the

circumcenter of BCD.

3. (Pole-Polar) Let X lie on the line joining the points of tangency of the tangents from Y to a
circle Ω. Then Y lies on the line joining the points of tangency of the tangents from X to Ω.

4. (Ceva’s Theorem) Let ABC be a triangle and D, E and F be on the lines BC, AC and AB
such that an even number are on the extensions of the sides (zero or two). Then AD, BE
and CF are concurrent if and only if

AF

FB
· BD
DC
· CE
EA

= 1
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5. (Menelaus’ Theorem) Let ABC be a triangle and D, E and F be on the lines BC, AC and
AB such that an odd number are on the extensions of the sides (one or three). Then D, E
and F are collinear if and only if

AF

FB
· BD
DC
· CE
EA

= 1

6. (Trig Ceva) Let ABC be a triangle and D, E and F be on the lines BC, AC and AB such
that an even number are on the extensions of the sides (zero or two). Then AD, BE and CF
are concurrent if and only if

sin(∠ABE)

sin(∠CBE)
· sin(∠BCF )

sin(∠ACF )
· sin(∠CAD)

sin(∠BAD)
= 1

7. (Casey’s Theorem) If A1, B1 and C1 are points on the sides BC,AC and AB of a triangle
ABC, then the perpendiculars to their respective sides at these three points are concurrent
if and only if BA2

1 − CA2
1 + CB2

1 −AB2
1 +AC2

1 −BC2
1 = 0.

8. (Apollonius Circle) Let ABC be a given triangle and let P be a point such that AB/BC =
AP/PC. If the internal and external bisectors of angle ∠ABC meet line AC at Q and R,
then P lies on the circle with diameter QR.

9. Let ABCD be a convex quadrilateral. The four interior angle bisectors of ABCD are
concurrent and there exists a circle Γ tangent to the four sides of ABCD if and only if
AB + CD = AD +BC.

10. (Simson Line) Let M , N and P be the projections of a point Q onto the sides of a triangle
ABC. Then Q lies on the circumcircle of ABC if and only if M , N and P are collinear. If Q
lies on the circumcircle of ABC, then the reflections of Q in the sides of ABC are collinear
and pass through the orthocenter of the triangle.

11. (Radical Axis to a Point) Suppose that Γ is a circle and P and Q are points such that P lies
on line passing through the midpoints of the tangents from Q to Γ, then the length of the
tangent from P to γ is equal to PQ.

12. (Monge’s Theorem) Given three circles Γ1,Γ2 and Γ3. If P , Q and R are the external centers
of homothety between pairs of the three circles, then P , Q and R are collinear. If P and Q
are internal centers of homothety, then P , Q and R are also collinear.

13. (Pascal’s Theorem) If A,B,C,D,E, F are points on a circle then the intersections of the pairs
of lines AB and DE, BC and EF , CD and FA lie on a line.

14. Pascal’s theorem is true when points are not necessarily distinct and many of its applications
concern tangent lines when some of the six points are equal.

15. (Pappus’ Theorem) If A,C and E lie on one line `1 and B,D and F lie on a line `2, then the
intersections of the pairs of lines AB and DE, BC and EF , CD and FA lie on a line.

16. (Brianchon’s Theorem) If ABCDEF is a hexagon with an inscribed circle then AD, BE and
CF are concurrent.
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17. (Desargues Theorem) Let ABC and XY Z be triangles. Let D,E, F be the intersections of
the pairs of lines AB and XY , BC and Y Z, AC and XZ. Then D, E and F are collinear if
and only if AX, BY and CZ are concurrent.

18. (Casey’s Theorem) Let O1, O2, O3, O4 be four circles tangent to a circle O. Let tij be the
length of the external common tangent between OiOj if Oi and Oj are tangent to O from the
same side and the length of the internal common tangent otherwise. Then

t12 · t34 + t41 · t23 = t13 · t24

The converse is also true: if the above equality holds then O1, O2, O3, O4 are tangent to O.

19. (Simson Line) Let M , N and P be the projections of a point Q onto the sides of a triangle
ABC. Then Q lies on the circumcircle of ABC if and only if M , N and P are collinear. If Q
lies on the circumcircle of ABC, then the reflections of Q in the sides of ABC are collinear
and pass through the orthocenter of the triangle.

20. (Butterfly Theorem) Let M be the midpoint of a chord XY of a circle Γ. The chords AB
and CD pass through M . If AD and BC intersect chord XY at P and Q, then M is also
the midpoint of PQ.

21. (Broken Chord Theorem) Let E is the midpoint of major arc ÂBC of the circumcircle of a
triangle ABC where AB < BC. If D is the projection of E onto BC, then AB+BD = DC.

22. (Feuerbach’s Theorem) The nine-point circle is tangent to the incircle and excircles.

23. (Miquel Point) Let D, E and F be points on sides BC, AC and AB of a triangle ABC. Then
the circumcircles of AEF , BDF and CDE are concurrent.

24. (Isogonal Conjugates) Let ABC be a triangle and P be a point. If the reflection of BP in
the angle bisector of ∠ABC and the reflection of CP in the angle bisector ∠ACB intersect
at Q, then Q lies on the reflection of CP in the angle bisector of ∠ACB.

8 Problems

The problems here are a few examples from past IMO Shortlists. Some directly use the lemmas
above while others do not.

1. Given three fixed pairwisely distinct points A, B, C lying on one straight line in this order.
Let G be a circle passing through A and C whose center does not lie on the line AC. The
tangents to G at A and C intersect each other at a point P . The segment PB meets the
circle G at Q. Show that the point of intersection of the angle bisector of the angle AQC
with the line AC does not depend on the choice of the circle G.

2. Let ABCD be a cyclic quadrilateral whose diagonals AC and BD meet at E. The extensions
of the sides AD and BC beyond A and B meet at F . Let G be the point such that ECGD is
a parallelogram, and let H be the image of E under reflection in AD. Prove that D,H,F,G
are concyclic.

11 of 14



2017 IMO Training Classical Geometry Configurations Matthew Brennan

3. A convex quadrilateral ABCD has perpendicular diagonals. The perpendicular bisectors of
the sides AB and CD meet at a unique point P inside ABCD. Prove that the quadrilateral
ABCD is cyclic if and only if triangles ABP and CDP have equal areas.

4. Let ABCD be a fixed convex quadrilateral with BC = DA and BC not parallel with DA. Let
two variable points E and F lie of the sides BC and DA, respectively and satisfy BE = DF .
The lines AC and BD meet at P , the lines BD and EF meet at Q, the lines EF and AC
meet at R. Prove that the circumcircles of the triangles PQR, as E and F vary, have a
common point other than P .

5. Let O be the circumcenter and H the orthocenter of an acute triangle ABC. Show that there
exist points D, E, and F on sides BC, CA, and AB respectively such that

OD +DH = OE + EH = OF + FH

and the lines AD, BE, and CF are concurrent.

6. In an acute triangle ABC the points D,E and F are the feet of the altitudes through A,B
and C respectively. The incenters of the triangles AEF and BDF are I1 and I2 respectively;
the circumcenters of the triangles ACI1 and BCI2 are O1 and O2 respectively. Prove that
I1I2 and O1O2 are parallel.

7. Let ABC be a triangle with AB 6= AC and circumcenter O. The bisector of ∠BAC intersects
BC at D. Let E be the reflection of D with respect to the midpoint of BC. The lines through
D and E perpendicular to BC intersect the lines AO and AD at X and Y respectively. Prove
that the quadrilateral BXCY is cyclic.

8. Let ABC be a triangle, and M the midpoint of its side BC. Let γ be the incircle of triangle
ABC. The median AM of triangle ABC intersects the incircle γ at two points K and L.
Let the lines passing through K and L, parallel to BC, intersect the incircle γ again in two
points X and Y . Let the lines AX and AY intersect BC again at the points P and Q. Prove
that BP = CQ.

9. Let ABC be an acute triangle with circumcircle Ω. Let B0 be the midpoint of AC and let C0

be the midpoint of AB. Let D be the foot of the altitude from A and let G be the centroid
of the triangle ABC. Let ω be a circle through B0 and C0 that is tangent to the circle Ω at
a point X 6= A. Prove that the points D,G and X are collinear.

10. Let ABCDE be a convex pentagon such that BC ‖ AE, AB = BC + AE, and ∠ABC =
∠CDE. Let M be the midpoint of CE, and let O be the circumcenter of triangle BCD.
Given that ∠DMO = 90◦, prove that 2∠BDA = ∠CDE.

11. Let AH1, BH2, CH3 be the altitudes of an acute angled triangle ABC. Its incircle touches
the sides BC,AC and AB at T1, T2 and T3 respectively. Consider the symmetric images of
the lines H1H2, H2H3 and H3H1 with respect to the lines T1T2, T2T3 and T3T1. Prove that
these images form a triangle whose vertices lie on the incircle of ABC.

12. Let ABCDEF be a convex hexagon all of whose sides are tangent to a circle ω with centre
O. Suppose that the circumcircle of triangle ACE is concentric with ω. Let J be the foot of
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the perpendicular from B to CD. Suppose that the perpendicular from B to DF intersects
the line EO at a point K. Let L be the foot of the perpendicular from K to DE. Prove that
DJ = DL.

13. Let ABCD be a circumscribed quadrilateral. Let g be a line through A which meets the
segment BC in M and the line CD in N . Denote by I1, I2 and I3 the incenters of 4ABM ,
4MNC and 4NDA, respectively. Prove that the orthocenter of 4I1I2I3 lies on g.
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9 Hints

1. (2003 G2) Introduce the other intersection of PB with the circle. Use similar triangles to
find useful ratios of sides and do a bit of algebra.

2. (2012 G2) What pair of similar triangles would imply that D,H,F and G are concyclic?

3. (1998 G1) Let Q be the intersection of the diagonals and think about MPQN where M and
N are the midpoints of AD and BC.

4. (2005 G4) What transformations are present in the diagram? Define the center of this trans-
formation.

5. (2000 G3) Remember the lemma that the reflection of H in the line BC lies on Γ.

6. (2012 G3) Draw in the circumcircles AI1C and BI2C. What do you notice? Now assume the
desired result and work backwards to figure out what is true.

7. (2012 G4) Draw in the midpoints of arcs B̂C and B̂AC. This is in general a good idea
whenever there is an incenter, angle bisector or sometimes even the circumcenter or midpoint
of a side.

8. (2005 G6) Try to reduce the problem to a result not involving P,Q,X or Y . Is any of the
lemmas from this handout particularly useful?

9. (2011 G4) Where does the tangent to Ω at X intersect B0C0? Are there any more natural
points to introduce into the diagram?

10. (2010 G5) Two general principles for creating new points to make use of midpoints are: (1)
reflect points through a midpoint to produce a parallelogram, and (2) add in more midpoints.
Whenever you are given a sum of lengths condition such as AB = BC+AE, it is often useful
to try construct the sum of length e.g. create a segment of length BC +AE by adding a new
point to the diagram. Try applying all of this here.

11. (2000 G8) Figure out the orientations of the sides of the triangle and reverse engineer Hi from
the points of the triangle. Show that it suffices to prove that these phantom points H ′i are
on the tangents to the incircle at Ti. Rephrasing what you want to prove, you should arrive
at a statement involving a triangle PQR, the midpoints of the major arcs of its circumcircle
and reflections of lines intersecting on a tangent to the circumcircle.

12. (2011 G7) The difficult line here is the perpendicular from B to DF . Try to make this
into the radical axis between two circles. In general it is worth trying to make mysterious
perpendicular lines into radical axes by introducing circles.

13. (2009 G8) What point in the diagram might lie on the circumcircle of I1I2I3? Prove it.
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